МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

(ФГБОУ ВО «МГТУ»)

Методические указания для самостоятельной работы

при изучении дисциплины (модуля)

Дисциплина	Б1.В.ДВ.06.02 «Телекоммуникации в высоких		
A	широтах»		
	код, вид, тип и наименование практики по учебному плану		
Специальность	11.05.01 Радиоэлектронные системы и		
	код и наименование направления подготовки /специальности		
	комплексы		
Специализация	Радиоэлектронные системы передачи информации		
	наименование направленности (профиля) /специализации образовательной		
	программы		
Разработчик	Доцент каф. РЭСиТРО М.А.Волков		

Мурманск 2019 Составитель – Волков Михаил Анатольевич, кандидат технических наук, доцент кафедры радиоэлектронных систем и транспортного радиооборудования Мурманского государственного технического университета

Методические указания рассмотрены и одобрены кафедрой радиоэлектронных систем и транспортного радиооборудования 19 ноября $2019 \, \Gamma$., протокол № 8.

ОБЩИЕ ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЕ УКАЗАНИЯ

1.Целью дисциплины (модуля) «Телекоммуникации в высоких широтах» является формирование компетенций в соответствии с квалификационной характеристикой специалиста и учебным планом для специальности 11.05.01_«Радиоэлектронные системы и комплексы»

2.Задача:

дать фундаментальные представления о строении полярной атмосферы и ионизированной оболочке Земли, с одной стороны, как средах распространения информационных радиосигналов и, с другой стороны, как основной части любой телекоммуникационной системы, особенностях ионосферного распространения радиоволн в высоких широтах, возможностях использования в телекоммуникациях высоких широт зондировании ионосферы радиосигналами ЛЧМ, излучении, приеме и обработке информации ЛЧМ зонда в неоднородной, неравновесной полярной ионосфере.

В результате изучения дисциплины обучающийся должен:

Знать:

- строение полярной атмосферы и ионизированной оболочки Земли, как среды распространения информационных радиосигналов и основной части любой телекоммуникационной системы;
 - особенности ионосферного распространения радиоволн в высоких широтах;
- возможности использования в телекоммуникациях высоких широт зондировании ионосферы радиосигналами ЛЧМ, излучении, приеме и обработке информации ЛЧМ зонда в неоднородной, неравновесной полярной ионосфере.

Уметь:

- пользоваться свободно распространяемым ПО для расчета радиотрасс распространения и характеристик радиосигналов;
- управлять работой (излучение, прием и обработка информации) ЛЧМ зонда в условиях неоднородной, неравновесной полярной ионосферы.

Владеть:

- навыками использования свободно распространяемого ПО для расчета радиотрасс распространения и характеристик радиосигналов;
- навыками управления работой (излучение, прием и обработка информации) ЛЧМ зонда в условиях неоднородной, неравновесной полярной ионосферы.

3.Процесс изучения дисциплины «Телекоммуникации в высоких широтах» направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО по направлению подготовки 11.05.01 "Радиоэлектронные системы и комплексы" и профессиональным стандартом 06.005 «Инженер-радиоэлектронщик»:

No	Код компетенции	Компоненты	Результаты обучения		
п/п		компетенции,	· ·		
		степень их			
		реализации			
1.	ПСК-2.2	Компоненты	знать: уравнения Максвелла и их следствия		
	способностью	компетенции	в теоретических и практических		
	оценивать	полностью	исследованиях		
	основные	соотносятся с	уметь: пользоваться свободно		
	показатели	содержанием	распространяемым ПО для расчета		
	качества систем	дисциплины, и	радиотрасс распространения и		
	передачи	компетенция	характеристик радиосигналов		
	информации с	реализуется	владеть: навыками расчета трасс		
	учетом	полностью	распространения радиоволн; навыками		
	характеристик		пользования специального ПО		
	каналов связи				
2.	ПК-11	Компоненты	знать: аппаратуру обслуживаемых		
	способностью к	компетенции	радиоэлектронных систем и комплексов и		
	реализации	полностью	ее функционирование		
	программ	соотносятся с	уметь: осуществлять эксплуатацию и		
	экспериментальны	содержанием	техническое обслуживание		
	х исследований, в	дисциплины.	радиоэлектронных систем и комплексов		
	том числе в		владеть: навыками эксплуатации и		
	режиме удаленного		технического обслуживания		
	доступа, включая		радиоэлектронных средств		
	выбор технических				
	средств, обработку				
	результатов и				
	оценку				
	погрешности				
	экспериментальны				
	х данных				

4.Содержание разделов дисциплины (модуля), виды работы

$N_{\underline{0}}$		Количество часов, выделяемых на виды учебной			
п/п	Содержание разделов (модулей),	подготовки по формам обучения			
	тем дисциплины	Заочная			
		Л	ЛР	ПР	СР
1	Тема 1. Распространение				
	дециметровых и сантиметровых				
	радиоволн через атмосферу и				
	ионосферу	0,5	-	-	10
2	Тема 2. Коэффициент преломления и				
	рефракция радиоволн. Статистические				
	характеристики неоднородностей				
	коэффициента преломления.	0,5	2	-	10
3	Тема 3. Запаздывание радиоволн в				
	атмосфере и ионосфере.	0,5	-	-	10

4	Тема 4. Влияние атмосферы и				
	ионосферы на амплитуду, фазу и				
	частоту радиоволн.	0,5	2	-	10
5	Тема 5. Принципы мониторинга				
	ионосферы с помощью сигналов				
	космических аппаратов.	0,5	ī	-	10
6	Тема 6. Радиозатменный метод				
	исследования ионосферы.	0,5	-	-	5
7	Тема 7. Радиосигналы метеорологиче-				
	ских, навигационных спутников в				
	высоких широтах.	-	-	-	5
	Итого:	4	4	-	60

Перечень лабораторных работ

No	Наименование лабораторных работ	Кол-во часов	№ темы по
$\Pi \backslash \Pi$			Таблице 4
1	2	3	4
1	Распространение дециметровых и сантиметровых	1	1
	радиоволн через атмосферу и ионосферу широт.		
2	Коэффициент преломления и рефракция радиоволн.	0,5	2
	Статистические характеристики неоднородностей		
	коэффициента преломления в полярных районах.		
3	Запаздывание радиоволн в атмосфере и ионосфере.	0,5	3
4	Влияние атмосферы и ионосферы на амплитуду,	0,5	4
	фазу и частоту радиоволн.		
5	Принципы мониторинга ионосферы с помощью	0,5	5
	сигналов космических аппаратов.		
6	Радиозатменный метод исследования ионосферы.	0,5	6
7	Радиосигналы метеорологических, навигационных	0,5	7
	спутников в высоких широтах.		
	Итого:	4	

5. Методические рекомендации

5.1 Методические рекомендации по организации работы обучающихся во время проведения лекционных занятий

- В ходе лекций преподаватель излагает и разъясняет основные, наиболее сложные понятия темы, а также связанные с ней теоретические и практические проблемы, дает рекомендации для практического занятия и указания для выполнения самостоятельной работы.
- Обучающемуся, в ходе лекционных занятий, необходимо вести конспектирование учебного материала. Обращать внимание на категории, формулировки, раскрывающие содержание изучаемой дисциплины, научные выводы и практические рекомендации, положительный опыт в ораторском искусстве.
- Желательно оставить в рабочих конспектах поля, на которых делать пометки, подчеркивающие особую важность тех или иных теоретических положений. Рекомендуется активно задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций.

5.2 Методические указания к выполнению лабораторных работ

- Лабораторные работы сочетают элементы теоретического исследования и практической работы. Выполняя лабораторные работы, обучающиеся лучше усваивают учебный материал, так как многие теоретические определения, казавшиеся отвлеченными, становятся вполне конкретными, происходит соприкосновение теории с практикой, что в целом содействует пониманию сложных вопросов науки и становлению обучающихся как будущих специалистов.
- Выполнение лабораторных работ направлено на:
- обобщение, систематизацию, углубление теоретических знаний по конкретным темам учебной дисциплины;
- формирование умений применять полученные знания в практической деятельности;
 - развитие аналитических, проектировочных, конструктивных умений;
 - выработку самостоятельности, ответственности и творческой инициативы.
- Лабораторные занятия, как вид учебной деятельности, проводятся в специальной лаборатории кафедры, оборудованной для выполнения лабораторных работ (заданий).
- Форма организации обучающихся для проведения лабораторного занятия фронтальная, групповая и индивидуальная определяется преподавателем, исходя из темы, цели, порядка выполнения работы. Оборудование используется в соответствии с инструкциями по эксплуатации.
- Результаты выполнения лабораторного работы оформляются обучающимися в виде отчета, форма и содержание которого определяются требованиями соответствующей работы.

5.3 Проведение занятий в интерактивной форме

- Интерактивное обучение представляет собой способ познания, осуществляемый в формах совместной деятельности обучающихся, т.е. все участники образовательного процесса взаимодействуют друг с другом, совместно решают поставленные проблемы, моделируют ситуации, обмениваются информацией, оценивают действие коллег и свое собственное поведение, погружаются в реальную атмосферу делового сотрудничества по разрешению проблем.
- Интерактивная форма обучения реализуется в виде проблемных лекций, коллективных решениях творческих задач и использовании метода проектов.
- **Проблемная лекция**. На этой лекции новое знание вводится через проблемность вопроса, задачи или ситуации. При этом процесс познания обучающихся в сотрудничестве и диалоге с преподавателем приближается к исследовательской деятельности. Разрешение проблемной ситуации происходит путем организации направления поиска ее решения, выдвижения гипотез и их проверки, решения задач различными способами, нахождения наиболее рационального пути решения и т.д.; анализа полученного результата, обсуждения противоречий или неоднозначности выводов и т.п.
- **Коллективные решения творческих задач**. Под творческими заданиями понимаются такие учебные задания, которые требуют от обучающихся не простого воспроизводства информации, а творчества, поскольку задания содержат больший или меньший элемент неизвестности и имеют, как правило, несколько подходов, несколько методов решения.

5.4 Методические рекомендации к самостоятельной работе

- Самостоятельная работа планируемая учебная, учебно-исследовательская, научноисследовательская работа обучающихся, выполняемая во внеаудиторное время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (при частичном непосредственном участии преподавателя, оставляющем ведущую роль за работой обучающихся).
- Самостоятельная работа обучающихся (далее CPO) в ВУЗе является важным видом учебной и научной деятельности обучающегося. СРО играет значительную роль в

рейтинговой технологии обучения. Обучение в ВУЗе включает в себя две, практически одинаковые по объему и взаимовлиянию части – процесса обучения и процесса самообучения. Поэтому СРО должна стать эффективной и целенаправленной работой обучающихся.

- К современному специалисту общество предъявляет достаточно широкий перечень требований, среди которых немаловажное значение имеет наличие у выпускников определенных способностей и умения самостоятельно добывать знания из различных источников, систематизировать полученную информацию, давать оценку конкретной ситуации. Формирование такого умения происходит в течение всего периода обучения через участие обучающихся в практических занятиях, выполнение контрольных заданий и тестов, написание курсовых и выпускных квалификационных работ. При этом СРО играет решающую роль в ходе всего учебного процесса.
- В процессе самостоятельной работы обучающийся приобретает навыки самоорганизации, самоконтроля, самоуправления, саморефлексии и становится активным самостоятельным субъектом учебной деятельности.
- Формы самостоятельной работы обучающихся разнообразны. Они включают в себя:
 - изучение учебной, научной и методической литературы, материалов периодических изданий с привлечением электронных средств официальной, патентной, статистической, периодической и научной информации;
 - подготовку докладов и рефератов, написание курсовых и выпускных квалификационных работ;
 - участие в работе студенческих конференций, комплексных научных исследованиях.
- Самостоятельная работа приобщает обучающихся к научному творчеству, поиску и решению актуальных современных проблем.
- Основной формой самостоятельной работы обучающегося является изучение конспекта лекций, их дополнение, рекомендованной литературы, активное участие на практических и лабораторных занятиях.

5.5 Методические рекомендации по решению тестовых заданий

- Тестовая система предусматривает вопросы/задания, на которые обучающийся должен дать один или несколько вариантов правильного ответа из предложенного списка ответов. При поиске ответа необходимо проявлять внимательность.
- При отсутствии какого—либо одного ответа на вопрос, предусматривающий множественный выбор, весь ответ считается неправильным.
- Ответы правильные выделяются в тесте подчеркиванием или любым другим символом.

5.6 Методические рекомендации по подготовке презентации

Алгоритм создания презентации:

- 1 этап определение цели презентации
- 2 этап подробное раскрытие информации,
- 3 этап основные тезисы, выводы.

Следует использовать 10-15 слайдов. При этом:

- первый слайд титульный, предназначен для размещения названия презентации, имени докладчика и его контактной информации;
- на втором слайде необходимо разместить содержание презентации, а также краткое описание основных вопросов;
- оставшиеся слайды имеют информативный характер.

Обычно подача информации осуществляется по плану: тезис – аргументация – вывод.

Требования к оформлению и представлению презентации:

- Читабельность (видимость из самых дальних уголков помещения и с различных устройств), текст должен быть набран 24-30-ым шрифтом.
- Тщательно структурированная информация.
- Наличие коротких и лаконичных заголовков, маркированных и нумерованных списков.
- Каждому положению (идее) надо отвести отдельный абзац.
- Главную идею надо выложить в первой строке абзаца.
- Использовать табличные формы представления информации (диаграммы, схемы) для иллюстрации важнейших фактов, что даст возможность подать материал компактно и наглядно.
- Графика должна органично дополнять текст.
- Выступление с презентацией длится не более 10 минут;

5.7 Методические рекомендации по подготовке доклада

Алгоритм создания доклада:

- 1 этап определение темы доклада
- 2 этап определение цели доклада
- 3 этап подробное раскрытие информации
- 4 этап формулирование основных тезисов и выводов.

5.8 Методические рекомендации по выполнению контрольных работ

- Контрольная работа является одним из видов учебной работы обучающихся и самостоятельной работы студентов-заочников, формой контроля освоения ими учебного материала по дисциплине, уровня знаний, умений и навыков.

Основные задачи выполняемой работы:

- закрепление полученных ранее теоретических знаний;
- выработка навыков самостоятельной работы;
- определение степени подготовленности студента к будущей практической работе.
- Контрольная работа это своеобразный письменный экзамен, который требует серьезной подготовки. При подготовке контрольных работ необходимо руководствоваться тематикой, которую рекомендует преподаватель, выбрав один из вариантов. Варианты контрольных работ распределяются преподавателем дисциплины.
- Письменную контрольную работу желательно представить в печатном виде, формат-А-4,шрифт-14, межстрочный интервал-1,5,поля: верхнее поле не менее 15 мм, нижнее поле не менее 15 мм, левое поле не менее 30 мм, правое поле не менее 15 мм; нумерация страниц в правом верхнем углу обязательна. Объём работы зависит от дисциплины и определяется преподавателем.

Список рекомендуемой литературы

Основная литература:

- 1. Яковлев О. И., Якубов В. П. Распространение радиоволн. Учебник. М., ЛЕНИЗДАТ. 2009.
- 2. Носов В.И. Распространение радиоволн и проектирование радиорелейных линий прямой видимости [Электронный ресурс]: учебное пособие/ Носов В.И.— Электрон. Текстовые данные.— Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2010.— 202 с.— Режим доступа: http://www.iprbookshop.ru/40546.html.— ЭБС «IPRbooks»
- 3. Семенов А. И. Распространение радиоволн по естественным трассам. Учеб. Пособие для вузов. М., САЙНС-ПРЕСС. 2005.

4. Шарыгина Л.И. Хронология развития радиоэлектроники : учебное пособие для вузов. Томск: ТУСУР. 2009.

Дополнительная литература:

- 1. О модельном распределении электронной концентрации в высокоширотной ионосфере / А. В. Гурин [и др.] // Вестник МГТУ : тр. Мурман. гос. техн. ун-та. 2011. Т. 14, № 3. С. 638-644.
- 2. Мандель А.Е. Распространение радиоволн [Электронный ресурс]: учебное пособие/ Мандель А.Е., Замотринский В.А.— Электрон. текстовые данные.— Томск: Томский государственный университет систем управления и радиоэлектроники, 2012.— 163 с.— Режим доступа: http://www.iprbookshop.ru/13969.html.— ЭБС «IPRbooks»
- 3. Золотов, О. В.Эффекты землетрясений в вариациях полного электронного содержания ионосферы : автореф. дис. ... канд. физико-мат. наук : 25.00.29 / О. В. Золотов; ФГБОУ ВПО "Мурман. гос. техн. ун-т". Мурманск, 2015. 18 с. : ил. Библиогр.: с. 19. 94 3-81

Ресурсы электронных библиотечных систем

- 1. Электронно-библиотечная система ЭБС http://www.rucont.ru/
- 2. ЭБС издательства "ЛАНЬ" http://e.lanbook.com
- 3. ЭБС BOOK.ru http://book.ru/
- 4. ЭБС ibooks.ru http://ibooks.ru/
- 5. ЭБС znanium.com издательства "ИНФРА-М" http://www.znanium.com
- 6. ЭБС НИТУ "МИСиС" http://lib.misis.ru/registr.html